Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Neurosci Educ ; 32: 100204, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689430

RESUMO

PURPOSE: Attentional control theory (ACT) posits that elevated anxiety increases the probability of re-allocating cognitive resources needed to complete a task to processing anxiety-related stimuli. This process impairs processing efficiency and can lead to reduced performance effectiveness. Science, technology, engineering, and math (STEM) students frequently experience anxiety about their coursework, which can interfere with learning and performance and negatively impact student retention and graduation rates. The objective of this study was to extend the ACT framework to investigate the neurobiological associations between science and math anxiety and cognitive performance among 123 physics undergraduate students. PROCEDURES: Latent profile analysis (LPA) identified four profiles of science and math anxiety among STEM students, including two profiles that represented the majority of the sample (Low Science and Math Anxiety; 59.3% and High Math Anxiety; 21.9%) and two additional profiles that were not well represented (High Science and Math Anxiety; 6.5% and High Science Anxiety; 4.1%). Students underwent a functional magnetic resonance imaging (fMRI) session in which they performed two tasks involving physics cognition: the Force Concept Inventory (FCI) task and the Physics Knowledge (PK) task. FINDINGS: No significant differences were observed in FCI or PK task performance between High Math Anxiety and Low Science and Math Anxiety students. During the three phases of the FCI task, we found no significant brain connectivity differences during scenario and question presentation, yet we observed significant differences during answer selection within and between the dorsal attention network (DAN), ventral attention network (VAN), and default mode network (DMN). Further, we found significant group differences during the PK task were limited to the DAN, including DAN-VAN and within-DAN connectivity. CONCLUSIONS: These results highlight the different cognitive processes required for physics conceptual reasoning compared to physics knowledge retrieval, provide new insight into the underlying brain dynamics associated with anxiety and physics cognition, and confirm the relevance of ACT theory for science and math anxiety.


Assuntos
Transtornos de Ansiedade , Ansiedade , Humanos , Universidades , Física , Estudantes
2.
bioRxiv ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37577598

RESUMO

Macroscale gradients have emerged as a central principle for understanding functional brain organization. Previous studies have demonstrated that a principal gradient of connectivity in the human brain exists, with unimodal primary sensorimotor regions situated at one end and transmodal regions associated with the default mode network and representative of abstract functioning at the other. The functional significance and interpretation of macroscale gradients remains a central topic of discussion in the neuroimaging community, with some studies demonstrating that gradients may be described using meta-analytic functional decoding techniques. However, additional methodological development is necessary to fully leverage available meta-analytic methods and resources and quantitatively evaluate their relative performance. Here, we conducted a comprehensive series of analyses to investigate and improve the framework of data-driven, meta-analytic methods, thereby establishing a principled approach for gradient segmentation and functional decoding. We found that a two-segment solution determined by a k-means segmentation approach and an LDA-based meta-analysis combined with the NeuroQuery database was the optimal combination of methods for decoding functional connectivity gradients. Finally, we proposed a method for decoding additional components of the gradient decomposition. The current work aims to provide recommendations on best practices and flexible methods for gradient-based functional decoding of fMRI data.

3.
Neurosci Biobehav Rev ; 144: 104971, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436737

RESUMO

Neuroscientists have sought to identify the underlying neural systems supporting social processing that allow interaction and communication, forming social relationships, and navigating the social world. Through the use of NIMH's Research Domain Criteria (RDoC) framework, we evaluated consensus among studies that examined brain activity during social tasks to elucidate regions comprising the "social brain". We examined convergence across tasks corresponding to the four RDoC social constructs, including Affiliation and Attachment, Social Communication, Perception and Understanding of Self, and Perception and Understanding of Others. We performed a series of coordinate-based meta-analyses using the activation likelihood estimate (ALE) method. Meta-analysis was performed on whole-brain coordinates reported from 864 fMRI contrasts using the NiMARE Python package, revealing convergence in medial prefrontal cortex, anterior cingulate cortex, posterior cingulate cortex, temporoparietal junction, bilateral insula, amygdala, fusiform gyrus, precuneus, and thalamus. Additionally, four separate RDoC-based meta-analyses revealed differential convergence associated with the four social constructs. These outcomes highlight the neural support underlying these social constructs and inform future research on alterations among neurotypical and atypical populations.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Funções Verossimilhança , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Lobo Temporal , Imageamento por Ressonância Magnética
4.
Behav Brain Funct ; 18(1): 9, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100907

RESUMO

BACKGROUND: Post-traumatic stress disorder (PTSD) is a debilitating disorder defined by the onset of intrusive, avoidant, negative cognitive or affective, and/or hyperarousal symptoms after witnessing or experiencing a traumatic event. Previous voxel-based morphometry studies have provided insight into structural brain alterations associated with PTSD with notable heterogeneity across these studies. Furthermore, how structural alterations may be associated with brain function, as measured by task-free and task-based functional connectivity, remains to be elucidated. METHODS: Using emergent meta-analytic techniques, we sought to first identify a consensus of structural alterations in PTSD using the anatomical likelihood estimation (ALE) approach. Next, we generated functional profiles of identified convergent structural regions utilizing resting-state functional connectivity (rsFC) and meta-analytic co-activation modeling (MACM) methods. Finally, we performed functional decoding to examine mental functions associated with our ALE, rsFC, and MACM brain characterizations. RESULTS: We observed convergent structural alterations in a single region located in the medial prefrontal cortex. The resultant rsFC and MACM maps identified functional connectivity across a widespread, whole-brain network that included frontoparietal and limbic regions. Functional decoding revealed overlapping associations with attention, memory, and emotion processes. CONCLUSIONS: Consensus-based functional connectivity was observed in regions of the default mode, salience, and central executive networks, which play a role in the tripartite model of psychopathology. Taken together, these findings have important implications for understanding the neurobiological mechanisms associated with PTSD.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Encéfalo/diagnóstico por imagem , Emoções , Humanos , Neuroimagem , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Transtornos de Estresse Pós-Traumáticos/psicologia
5.
NPJ Sci Learn ; 4: 20, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31814997

RESUMO

Understanding how students learn is crucial for helping them succeed. We examined brain function in 107 undergraduate students during a task known to be challenging for many students-physics problem solving-to characterize the underlying neural mechanisms and determine how these support comprehension and proficiency. Further, we applied module analysis to response distributions, defining groups of students who answered by using similar physics conceptions, and probed for brain differences linked with different conceptual approaches. We found that integrated executive, attentional, visual motion, and default mode brain systems cooperate to achieve sequential and sustained physics-related cognition. While accuracy alone did not predict brain function, dissociable brain patterns were observed when students solved problems by using different physics conceptions, and increased success was linked to conceptual coherence. Our analyses demonstrate that episodic associations and control processes operate in tandem to support physics reasoning, offering potential insight to support student learning.

6.
NPJ Sci Learn ; 4: 18, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31700677

RESUMO

Anxiety is known to dysregulate the salience, default mode, and central executive networks of the human brain, yet this phenomenon has not been fully explored across the STEM learning experience, where anxiety can impact negatively academic performance. Here, we evaluated anxiety and large-scale brain connectivity in 101 undergraduate physics students. We found sex differences in STEM-related and clinical anxiety, with longitudinal increases in science anxiety observed for both female and male students. Sex-specific relationships between STEM anxiety and brain connectivity emerged, with male students exhibiting distinct inter-network connectivity for STEM and clinical anxiety, and female students demonstrating no significant within-sex correlations. Anxiety was negatively correlated with academic performance in sex-specific ways at both pre- and post-instruction. Moreover, math anxiety in male students mediated the relation between default mode-salience connectivity and course grade. Together, these results reveal complex sex differences in the neural mechanisms driving how anxiety is related to STEM learning.

7.
Neurosci Biobehav Rev ; 92: 318-337, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29944961

RESUMO

Problem solving is a complex skill engaging multi-stepped reasoning processes to find unknown solutions. The breadth of real-world contexts requiring problem solving is mirrored by a similarly broad, yet unfocused neuroimaging literature, and the domain-general or context-specific brain networks associated with problem solving are not well understood. To more fully characterize those brain networks, we performed activation likelihood estimation meta-analysis on 280 neuroimaging problem solving experiments reporting 3166 foci from 1919 individuals across 131 papers. The general map of problem solving revealed broad fronto-cingulo-parietal convergence, regions similarly identified when considering separate mathematical, verbal, and visuospatial problem solving domain-specific analyses. Conjunction analysis revealed a common network supporting problem solving across diverse contexts, and difference maps distinguished functionally-selective sub-networks specific to task type. Our results suggest cooperation between representationally specialized sub-network and whole-brain systems provide a neural basis for problem solving, with the core network contributing general purpose resources to perform cognitive operations and manage problem demand. Further characterization of cross-network dynamics could inform neuroeducational studies on problem solving skill development.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Vias Neurais/fisiologia , Resolução de Problemas/fisiologia , Encéfalo/diagnóstico por imagem , Humanos , Vias Neurais/diagnóstico por imagem , Neuroimagem
8.
Front ICT ; 52018 May.
Artigo em Inglês | MEDLINE | ID: mdl-31106219

RESUMO

Modeling Instruction (MI) for University Physics is a curricular and pedagogical approach to active learning in introductory physics. A basic tenet of science is that it is a model-driven endeavor that involves building models, then validating, deploying, and ultimately revising them in an iterative fashion. MI was developed to provide students a facsimile in the university classroom of this foundational scientific practice. As a curriculum, MI employs conceptual scientific models as the basis for the course content, and thus learning in a MI classroom involves students appropriating scientific models for their own use. Over the last 10 years, substantial evidence has accumulated supporting MI's efficacy, including gains in conceptual understanding, odds of success, attitudes toward learning, self-efficacy, and social networks centered around physics learning. However, we still do not fully understand the mechanisms of how students learn physics and develop mental models of physical phenomena. Herein, we explore the hypothesis that the MI curriculum and pedagogy promotes student engagement via conceptual model building. This emphasis on conceptual model building, in turn, leads to improved knowledge organization and problem solving abilities that manifest as quantifiable functional brain changes that can be assessed with functional magnetic resonance imaging (fMRI). We conducted a neuroeducation study wherein students completed a physics reasoning task while undergoing fMRI scanning before (pre) and after (post) completing a MI introductory physics course. Preliminary results indicated that performance of the physics reasoning task was linked with increased brain activity notably in lateral prefrontal and parietal cortices that previously have been associated with attention, working memory, and problem solving, and are collectively referred to as the central executive network. Critically, assessment of changes in brain activity during the physics reasoning task from pre- vs. post-instruction identified increased activity after the course notably in the posterior cingulate cortex (a brain region previously linked with episodic memory and self-referential thought) and in the frontal poles (regions linked with learning). These preliminary outcomes highlight brain regions linked with physics reasoning and, critically, suggest that brain activity during physics reasoning is modifiable by thoughtfully designed curriculum and pedagogy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...